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Abstract Copolymer of aniline and triethylene glycol

bis(o-aminophenyl) ether was synthesized by constant

potential electrolysis. Cyclic voltammogram of the

copolymer films recorded in the monomer-free electrolytic

solution revealed that the redox behavior of the films

approaches to that of poly(triethylene glycol bis(o-amino-

phenyl) ether) with increasing amount of triethylene glycol

bis(o-aminophenyl) in the feed ratio. Copolymerization

was investigated by in situ recording the changes in the

electronic absorption spectrum during electrolysis. The free

standing copolymer film was characterized utilizing Fou-

rier transform infrared spectrometer, and spectroelectro-

chemical behavior of the copolymer was investigated via

in situ UV–vis spectroscopic technique. Besides the elec-

tron spin resonance study of the copolymer film, the dif-

ferent morphologies of the polymers were examined by

scanning electron microscopy and the copolymerization

was confirmed. The temperature dependence conductivity

of the copolymer film was measured by four-probe tech-

nique in the temperature range of 100–300 K, and the

calculated parameters showed that conduction mechanism

fits to variable range hopping.

Keywords Copolymer � Polyether bridge � Polyaniline �
Variable range hopping

1 Introduction

The development of organic p-conjugated polymers has

been intensively pursued because they have a great

potential for advanced technological applications in the

field of photovoltaics [1–5], transistors [6–9], light emitting

diodes [10–13], and molecular electronics [14–16]. Par-

ticularly, they have become one of the most favored elec-

trochromes in optical displays [17], smart windows

[18, 19], devices [20, 21], mirrors [22, 23], and camouflage

materials [24, 25] because of their low cost, compatibility,

and tunable intrinsic properties (electronic, optical, con-

ductivity, and stability) offered by the structural design of

the starting materials [26–28]. However, their poor pro-

cessibility and solubility restrict their common use. To

overcome these drawbacks, one way is to functionalize the

monomer prior to polymerization or to copolymerize it

with other monomers.

Copolymerization leads materials with intermediate

properties between two homopolymers, thus allowing modi-

fication of the physical properties of conducting polymers.

Among conducting polymers, polyaniline (PANI) is unique

not only because of its stability in air but also its solubility in

some solvents which enhances processibility. However,

there are also studies involving its copolymerization or

functionalization to alter its properties. The copolymeriza-

tion of aniline (ANI) with o-, m-, and p-phenylenediamines

[29], o-toluidine [30], and o-methoxyaniline [31] are the

examples of studies where the objectives are to control the

electrical conductivity and/or examine the effect of mono-

mer feed ratio on electrical conductivity. The copolymeri-

zation of ANI with thiophene and the increase in the

conductivity with increasing thiophene concentration were

also investigated [32]. Furthermore, electrochemical copo-

lymerization of ANI with aniline-2,5-disulfonic acid [33],
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o-aminobenzonitrile [34], m-phenylenediamine [35],

N-butylaniline [36], and o-toluidine [36, 37] are the exam-

ples of efforts to improve the properties of PANI. The

copolymerization of o-aminophenol with ANI was studied

by in situ spectroelectrochemical method in a detailed

manner [38]. Besides the aniline copolymerization, o- and m-

methoxyaniline were copolymerized with diphenylamine

and investigated via UV–vis technique [39, 40] as well.

Although there are large number of examples of function-

alized monomers substituted with crown ethers and/or

polyether chains in order to design modified electrodes for

electrochemical and bioelectrochemical sensors which can

provide an electrical transduction of ionic information

[41–46], there are only few reports on the polymerization of

polyether substituted ANI derivatives [47–49].

In this connection, recently, we have studied electro-

chemical polymerization of triethylene glycol bis(o-ami-

nophenyl) ether (I) and found that the corresponding

polymer film PI can be reversibly cycled between its neutral

and oxidized states; however, it exhibited relatively lower

conductivity as compared to PANI [50]. Taking into account

these results, we turned our attention to a new copolymer of

aniline. In this article, we wish to report the synthesis of

copolymer bearing pseudo-polyether cages with reasonable

conductivity to be amenable for use in sensors. The copo-

lymerization of I with ANI monomer was investigated and

the copolymer was characterized in terms of cyclic vol-

tammetry (CV), Fourier transform infrared (FTIR) spec-

trometer, and in situ UV–vis spectroscopic techniques.

Furthermore, the results of conductivity measurements in

the temperature range of 100–300 K were also represented.

2 Experimental details

2.1 Materials

The synthesis of I was achieved according to the procedure

described in the literature [51]. Electrochemical polymer-

ization of I was already explained in a previous work [50].

ANI monomer was purchased from Merck and used after

distillation. The copolymerization of I and ANI was

achieved in 3.0 M H2SO4 aqueous solution by applying CV

and constant potential electrolysis techniques. Since the

synthesis of freestanding polymer films could only be

achieved in water with high acid concentration [50] the

same medium was used also for copolymerization studies.

The synthesized polymer was dried under vacuum at room

temperature for 72 h.

2.2 Measurements

Electrochemical measurements were made using a Gamry

potentiostat (equipped with PHE 200 Physical electrochemistry

software). During CV studies, glassy carbon, Pt, and Ag/

AgCl were used as working, counter, and reference elec-

trodes, respectively. For spectroelectrochemical studies,

platinum and silver wires were used as counter and refer-

ence electrodes, respectively. An indium-tin-oxide-coated

electrode (ITO, Delta Tech. 8–12 X, 0.7 cm 9 5 cm) was

used as the working electrode. Electrolytic solution (3.0 M

H2SO4 (aq)) was purged with Ar(g) for 30 min prior to

spectroelectrochemical studies, and the measurements

were done under Ar(g) atmosphere using a HP 8453A diode

array UV–visible spectrometer. FTIR spectra of the sam-

ples were recorded using a Bruker Vertex-70 FTIR spec-

trophotometer. The morphologies of copolymer films and

PANI deposits were examined utilizing FEI Quanta 400

scanning electron microscope. Varian E12 ESR spectrom-

eter operating at X-band with 100 kHz field modulation

was used for investigating paramagnetic behavior of the

polymers at room temperature.

The dc conductivity measurements were done by four-

probe technique at about 10-5 atm. Constant current was

applied to the samples by using a Keithley 6220 pro-

grammable current source, and the voltage changes were

measured by a Keithley 6514 electrometer. The tempera-

ture dependent conductivity between 100 and 300 K was

studied in Janis cryostat, and the temperature was adjusted

by using Lake Shore 331 temperature controller unit.

3 Results and discussions

3.1 Voltammetric studies of mixture of I and ANI

Since the oxidation potential values of both monomers, I

and ANI, are the same [50], oxidation of monomer mix-

tures can form copolymers due to competing reactions

between them during electrolysis. Therefore, the cyclic

voltammograms of ANI solution and ANI/I mixtures with

three different ratios were recorded in the potential range of

0.0–1.3 V and the results obtained during first 20 cycles are

depicted in Fig. 1. The cyclic voltammogram of ANI in

concentrated H2SO4 (3.0 M) is different from its well

known voltammogram (Fig. 1a). As seen in Fig. 1c, three

reversible peaks started to intensify at about 0.30, 0.42 and

0.60 V after the first anodic scan representing the ANI

incorporation. Furthermore, redox behavior of the copoly-

mer film approached to that of PI with increasing amount

of I in the monomer mixture (Fig. 1g) which is further

evidenced by recording the cyclic voltammogram of

polymer films in monomer-free electrolyte solutions (see

Fig. 1b, d, f, h).In this work, a feed ratio of 10:2 (ANI/I)

was selected for detailed investigation of copolymer.

The electronic absorption spectra of I, ANI, and ANI/I

mixture recorded during electrolysis at 1.2 V versus Ag
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wire are depicted in Fig. 2. First of all, upon starting

electrolysis of I a new band at about 475 nm started to

intensify immediately with a concomitant increase in

360 nm band which is most probably due to p–p* transi-

tion within leucoemeraldine form [52]. Since the absorp-

tion band at 475 nm diminished after stopping the

electrolysis, this band was ascribed to absorption of an

intermediate [38]. For the sake of comparison, the elec-

tronic absorption spectrum of ANI solution was also

monitored throughout the electrolysis (Fig. 2b). In the

spectrum of ANI two absorption bands (360 and 710 nm)

were observed. The band at 360 nm can be attributed to

p–p* transition of benzonoid rings, characteristic for the

leucoemeraldine form of PANI, and the latter can be

ascribed to N-phenyl-p-phenylenediamine dimers and its

dications [38]. The changes in the electronic absorption

spectrum recorded during the constant potential electroly-

sis of ANI/I mixture, however, exhibit similarities with that

I as expected (Fig. 2c). The absorption bands at approxi-

mately 365 and 490 nm are almost at the same wavelength

as that of I. On the other hand, the broad band centered at

about 740 nm reveals the incorporation of ANI units

bearing conjugation. It is noteworthy to mention that while

constant potential electrolysis of ANI yields PANI in the

powder form, the free standing film was formed only from

the ANI/I mixture. The insertion of polyetheric chains

between ANI units may be the reason for film formation

even at low concentrations.

3.2 Structure and morphology analysis

of poly(I-co-ANI)

For the morphological comparison, copolymer was syn-

thesized by electrolysis at 1.2 V versus Ag wire on ITO

from the ANI/I (10/2) mixture. The film form of copolymer

and PI and the powder form of PANI were inspected by

using SEM (Fig. 3). Contrary to smooth and uniform sur-

face of PI (Fig. 3b, e) or the fibrillar surface of PANI

(Fig. 3a, d), the copolymer film has a coarse surface

(Fig. 3c, f) indicating a new feature between two

homopolymers.

In order to find supplementary evidences for the

copolymer formation, the ESR spectra of PI and copolymer

were recorded (Fig. 4). Although the spectra are similar in

Fig. 1 Repetitive cycles of a ANI, and ANI/I with different

compositions; c 10/1 (40.0 mM/4.0 mM), e 10/2 (40.0 mM/

8.0 mM), g 10/5 (40.0 mM/20.0 mM), and CV of b PANI, and

poly(I-co-ANI) synthesized from different compositions; d 10/1

(40.0 mM/4.0 mM), f 10/2 (40.0 mM/8.0 mM), h 10/5 (40.0 mM/

20.0 mM)
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appearance with g value close to that of free electron and

all in Dysonian shape, the line widths, DHpp, were found to

be 1.9 and 0.8 mT for PI and poly(I-co-ANI), respectively.

The lower DHpp value in the case of poly(I-co-ANI)

indicates higher charge carrier mobility than that of PI

[53]. Additionally, the asymmetry factor, A/B, of the

asymmetric Dysonian shaped lines were found to increase

from 1.5 for PI to 3.1 for poly(I-co-ANI). This type of line

shape is characteristic for highly doped polymers and

indicates an increased interaction of charge carriers within

the skin with microwave field [54]. Thus, the increase in

the A/B ratio is not only a further evidence for the

copolymer formation but also indicates the enhancement of

conductivity [55]. This result is also consistent with the

room temperature conductivity measurements. The room

temperature conductivity of poly(I-co-ANI) was found to

be one order of magnitude greater (1.1 9 10-2 S cm-1)

than that of PI [50]. Furthermore, FTIR spectra of poly

(I-co-ANI)) (Fig. 5) was also recorded to confirm the

presence of polyether bridges along the copolymer back-

bone. The band at about 3,220 cm-1 indicates that the

electrochemical polymerization takes place via –NH2

groups. The bands at 1,490 and 1,575 cm-1 correspond to

quinoid and benzenoid structures of copolymer film.

The peaks at about 748 and 810 cm-1 are associated with

o- and p-substitution in the polymer backbone, indicating

the presence of two adjacent hydrogen atoms. In addition,

the presence of aliphatic –CH2 bands around 2,870 cm-1,

and –C–O–C– bands around 1,100 cm-1 in the FTIR

spectrum of copolymer confirms the existence of polyether

bridges in copolymer backbone. Under the light of these

findings, the mechanism for copolymerization and a plau-

sible structure for poly(I-co-ANI) are given in Scheme 1

and 2, respectively.

3.3 Spectroelectrochemical behavior

To reveal the electro-optical properties of the copolymer,

the copolymer film was coated on ITO at a constant

potential of 1.2 V and optoelectrochemical spectra were

recorded in the monomer-free electrolyte solution. The

in situ absorption spectra of PANI at various applied

potentials between -0.2 and 0.5 V were recorded as well

(Fig. 6, inset). The absorption around 295 nm in spectrum

of PANI in neutral state can be attributed to the p–p*

transition of benzenoid rings of the leucoemeraldine form

of the polymer [56]. The band at around 435 nm as

observed also in PI can be ascribed to radical cation

intermediates [50, 57]. It is worth noting that in spectra of

both PANI and poly(I-co-ANI) (Fig. 6) there is a blue shift

for the absorption band at around 700 nm with increasing

potential indicating a transition from leucoemeraldine form

to emeraldine form [56]. These shifts may occur due to the

conformational changes during doping/dedoping process of

PANI [58] and poly(I-co-ANI). Such conformational

changes described as compact coil or extended coil tran-

sitions altering the absorption spectra [59, 60]. The Eg

Fig. 2 Changes in the electronic absorption spectra recorded during

the polymerization of a 8.0 mM I, b 40.0 mM ANI, and c ANI/I
(40.0 mM/8.0 mM) monomer mixture. Dashed lines show the spectra

recorded 2.5 min after switching off the potential
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values of PANI and poly(I-co-ANI) were found to be 2.71

and 3.01 eV, respectively, by the commencement on the

lower energy end of p–p* transitions [61]. The difference

might be due to the insertion of I into ANI units which

caused an increase in the band gap of PANI.

3.4 Temperature dependent conductivity

of poly(I-co-ANI)

In order to investigate the temperature dependence of

conductivity of the poly(I-co-ANI), the changes in

conductivity versus temperature were analyzed by follow-

ing relation [62].

r ¼ r0 exp
�Ea

T

� �
: ð1Þ

The conductivity–temperature profile of the poly(I-co-

ANI) (Fig. 7, inset) has two linear regions below and above

175 K. The slopes of these regions correspond to activation

energies of 25.5 and 39.6 meV for the temperatures lower

and higher than 175 K, respectively. This result reveals

that the ln(r)-T-1 behavior is nonlinear in the given

temperature interval.

Fig. 3 Scanning electron

micrographs: electrode side of

a PANI, b PI, c poly(I-co-ANI),

and solution side of d PANI,

e PI, f poly(I-co-ANI)
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The results were also analyzed according to Mott’s

variable range hopping (VRH) model [63]. The following

expression was used for the temperature dependent

conductivity,

r ¼ r0 exp � T0

T

� � 1
dþ1

 !
ð2Þ

where d is dimensionality 1, 2, or 3.

In order to estimate the dimensionality of the hopping

process the plots of ln(r) versus T-1/2, ln(r) versus T-1/3,

and ln(r) versus T-1/4 were obtained. Among the three

plots, the most linear behavior was found in three

dimensions with a regression coefficient of 0.9994 (Fig. 7)

for the copolymer. Similar results at given temperature

interval were also reported for doped poly(o-methoxyani-

line) [58] and PANI [64, 65].

Although the obtained plot was linear, the Mott’s

parameters were also calculated in order to check the

Mott’s requirements by using following equations.

T0 ¼
ka3

kBNðEFÞ
ð3Þ

r0 ¼ e2tR2NðEFÞ ð4Þ

where r0 is the pre-exponential factor and T0 is the

characteristic temperature found from the intercept and

slope of ln(r) versus T-1/4, respectively. k is the

dimensionless constant (&18.1) [66], e is the electronic

charge, a is the coefficient of exponential decay of the

localized states, the characteristic phonon frequency t is

&1013 Hz [67], k is the Boltzmann’s constant, and N(EF) is

the density of localized states at the Fermi level. The

definition of the average hopping distance, R, and the

average hopping energy, W, are as follows.

R ¼ 9= 8pakBTNðEFÞ½ �f g1=4 ð5Þ

W ¼ 3
�

4pR3NðEFÞ
� �

: ð6Þ

The calculated values of T0 (8.63 9 105 K) and r0

(17.86 S cm-1) were substituted into Eqs. 4 and 5 in order

to obtain a and N(EF), which were found as 0.0496 9

108 cm-1 and 2.96 9 1019 cm-3 eV-1, respectively. In

addition, the values of R (61.3 Å) and W (35.0 meV) were

calculated by using Eqs. 5 and 6.

Based on foregoing results, it can be safely concluded

that the temperature dependent conductivity of poly(I-co-

ANI) between 100 and 300 K is explained by VRH

mechanism in three dimensions and the calculated

parameters are consistent with Mott’s requirements that are

aR � 1 and W � kT.

4 Conclusions

In summary, the copolymer of I and ANI was synthesized

in the form of a free standing film by both potentiody-

namic and potentiostatic methods. The copolymer was

investigated by spectroscopic methods, and the FTIR

results showed that the polyether bridge in I was pro-

tected during copolymerization. The expected morpho-

logical differences, confirming copolymerization, between

homopolymers and copolymer were seen by SEM. The

combination of I and ANI in the copolymer caused

increase in room temperature conductivity relative to that

Fig. 4 ESR spectra of PI and poly(I-co-ANI) recorded at room

temperature, field setting 336 T and microwave power 5 mW

Fig. 5 FTIR spectrum of poly(I-co-ANI)
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of PI. Furthermore, the conduction mechanism of the

copolymer was elucidated by measurements of tempera-

ture dependent conductivity. The obtained data showed

that the Mott’s requirements in three dimensions were

satisfied. The obtained conductive copolymer with

pseudo-polyether cages represents a promising candidate

to utilize as a sensor material. Work in this line is in

progress.

Scheme 1 Copolymerization of aniline with I

Scheme 2 A plausible structure

for poly(I-co-ANI)
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